On the accuracy of uniform polyhedral approximations of the copositive cone
نویسنده
چکیده
We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called copositive programs, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in the limit. By combining our outer polyhedral approximations with the inner polyhedral approximations due to de Klerk and Pasechnik [SIAM J. Optim, 12 (2002), pp. 875–892], we obtain a sequence of increasingly sharper lower and upper bounds on the optimal value of a copositive program. Under primal and dual regularity assumptions, we establish that both sequences converge to the optimal value. For standard quadratic optimization problems, we derive tight bounds on the gap between the upper and lower bounds. We provide closed-form expressions of the bounds for the maximum stable set problem. Our computational results shed light on the quality of the bounds on randomly generated instances.
منابع مشابه
An Adaptive Linear Approximation Algorithm for Copositive Programs
We study linear optimization problems over the cone of copositive matrices. These problems appear in nonconvex quadratic and binary optimization; for instance, the maximum clique problem and other combinatorial problems can be reformulated as such problems. We present new polyhedral inner and outer approximations of the copositive cone which we show to be exact in the limit. In contrast to prev...
متن کاملLMI Approximations for Cones of Positive Semidefinite Forms
An interesting recent trend in optimization is the application of semidefinite programming techniques to new classes of optimization problems. In particular, this trend has been successful in showing that under suitable circumstances, polynomial optimization problems can be approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over the cone of copositiv...
متن کاملAnalysis of copositive optimization based linear programming bounds on standard quadratic optimization
The problem of minimizing a quadratic form over the unit simplex, referred to as a standard quadratic optimization problem, admits an exact reformulation as a linear optimization problem over the convex cone of completely positive matrices. This computationally intractable cone can be approximated from the inside and from the outside by two sequences of nested polyhedral cones of increasing acc...
متن کاملSymmetric Tensor Approximation Hierarchies for the Completely Positive Cone
In this paper we construct two approximation hierarchies for the completely positive cone based on symmetric tensors. We show that one hierarchy corresponds to dual cones of a known polyhedral approximation hierarchy for the copositive cone, and the other hierarchy corresponds to dual cones of a known semidefinite approximation hierarchy for the copositive cone. As an application, we consider a...
متن کاملOn polyhedral approximations in p-order cone programming
This paper discusses the use of polyhedral approximations in solving of p-order cone programming (pOCP) problems, or linear problems with p-order cone constraints, and their mixed-integer extensions. In particular, it is shown that the cutting-plane technique proposed in Krokhmal and Soberanis (2010) for a special type of polyhedral approximations of pOCP problems, which allows for generation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 27 شماره
صفحات -
تاریخ انتشار 2012